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Abstract—Wireless networks are facing increasing pressure
today with the expansion of mobile devices, IoT applications,
and high-bandwidth services. Predicting network traffic load
is essential for dynamically allocating resources and maintain-
ing service quality under varying conditions. In this work,
I am going to explore the application of machine learning
algorithms—XGBoost and Long Short-Term Memory (LSTM)
networks—for the prediction of wireless network loads. Using
the AT&T WiFi Connection Dataset, we selected features such
as Hour, DayOfWeek, and the number of connected users to
predict download speed (Download Mbps). XGBoost was chosen
for its stability and strong performance on structured data, while
LSTM was selected for its capability in capturing time-dependent
patterns in sequential datasets. Both models were trained and
evaluated using an 80/20 data split, and tested using Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and
R2 Score.

Results showed that XGBoost provided better prediction stabil-
ity, reduced error rates, and faster training times, making it ideal
for scenarios requiring quick predictions. In the contrast, LSTM
was more strong to the sudden traffic fluctuations, excelling
at modeling complex wordly behavior. Visualizations of the
predictions, feature importance, and the training loss curves
highlighted the contrast between two models. This study shows
the practical advantages of machine learning in wireless network
optimization and suggests that hybrid approaches—combining
XGBoost’s efficiency with the LSTM’s temporal learning capa-
bility—could yield superior results. Future research will focus on
expanding the feature space to include user mobility patterns,
device types, and real-time environmental conditions, and on
testing hybrid models under real-world network scenarios for
enhanced intelligent resource management.

Index Terms—Wireless Network Load Prediction, XGBoost,
Long Short-Term Memory (LSTM), Machine Learning, Time-
Series Forecasting, Network Traffic, Download Speed, AT&T
WiFi Dataset, Regression Models, Intelligent Resource Manage-
ment

I. INTRODUCTION

Wireless networks have evolved into the backbone of mod-
ern communication infrastructure, interconnecting millions of
devices, including mobile phones, smart home appliances,
industrial sensors, and smart city systems. However, the rapid
growth in users and the data traffic has introduced the sig-
nificant challenges in to the network management, such as
unforeseen overcrowding, degraded the quality of service,
and inefficient resource usage. Load forecasting in wireless
networks presents a proactive solution to these challenges. Ac-
curate traffic forecasting enables dynamic resource planning,
prevents service deterioration, and enhances user satisfaction.

The primary goal of this work is to present and exam-
ine two robust machine learning methods—Extreme Gra-
dient Boosting(XGBoost) and the Long Short-Term Mem-
ory(LSTM) networks—for predicting wireless network load,
aiming to improve the accuracy of traffic prediction under
diverse conditions. This objective gains significance amid the
rising demand for intelligent network management driven by
emerging innovations such as the 5G, the Internet of Things
(IoT), and the forthcoming 6G networks. Traditional statistical
methods, though effective in the past, fall short in addressing
the nonlinear and time-varying behavior characteristic of mod-
ern wireless traffic. In the contrast of machine learning models
offer a promising arteries by learning patterns directly from
data without the detailed programming.

Among these models, XGBoost is well-known for its high
performance on structured data, while LSTM is particularly
effective at modeling temporal dependencies in sequential
data. Comparing the these two models’ performance provides
the useful insights into the most suitable approaches for
wireless load forecasting, depending on specific operational
requirements.

Previous research has highlighted the effectiveness of ma-
chine learning in wireless environments. Hailemariam et al. [1]
demonstrated the ability of deep learning methods, particularly
LSTM, in wireless resource optimization. Laha et al. [2]
evaluated the influence of machine learning in the IoT and
the wireless networks, emphasizing the need for smart traffic
forecasting. Chen et al. [3] applied boosting methods to
enhance energy efficiency in 5G networks, demonstrating the
flexibility of ensemble models. Gao et al. [4] explored deep
learning-based dynamic resource allocation but did not directly
compare structured-data models like XGBoost with sequential
models like LSTM on the same dataset.

Despite the promising findings, a noticeable gap exists
in current literature: few studies directly compare ensemble
models such as XGBoost with sequential models like LSTM
for wireless traffic forecasting using real-world datasets.

To address this gap, this study applies both XGBoost and
LSTM to the AT&T WiFi Connection Dataset, which provides
real measurements of user connection times, download speeds,
and usage amounts. The dataset is preprocessed to draw out
relevant features such as Hour, DayOfWeek, and the number of
Connected users, with Download Mbps as the target variable.
XGBoost is used to model dependencies in structured features,



while LSTM is used to capture sequential patterns over time.
This paper offers three primary contributions. First, we eval-

uate both models using standard metrics: Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and R2 score. Sec-
ond, we see model performance through the prediction plots,
training loss curves, and feature importance rankings. Third,
we assess each model’s computational efficiency and practical
suitability for real-world wireless network environments.

This study supports researchers and practitioners in the
wireless communication field by providing a detailed compar-
ative analysis of XGBoost and LSTM, thereby enabling the
selection of appropriate machine learning strategies for proac-
tive and intelligent network management in next-generation
communication systems.

II. RELATED WORKS

The utilize of machine learning techniques in wireless
network optimization has accumulated significant attention
in last recent years. Number of studies have highlighted the
likely of machine learning for predicting the traffic patterns,
validate dynamic resource allocation, and enhancing overall
wireless network performance. However, the limitations in
prior methodologies underscore the need for more compre-
hensive and comparative analyses.

Hailemariam et al. [1] explored the application of deep
learning frameworks, particularly Long Short-Term Memory
(LSTM) networks and reinforcement learning algorithms, for
wireless network resource optimization. Their findings are
demonstrated that the deep models effectively capture related
dependencies in the network traffic, resulting in improvement
of load prediction and the energy savings. Nonetheless, the
study was limited to deep learning methods and did not exam-
ine alternative models that might provide faster computation
or improved scalability in structured data environments.

Laha et al. [2] conducted a comprehensive evaluation on the
machine learning applications in the IoT and the wireless net-
works, covering both supervised and unsupervised algorithms
aimed at the enhancing traffic management and the security.
While acknowledging the importance of time-series analysis,
their work didn’t analytically compare structured models like
the boosting algorithms against deep learning methods, leaving
a gap in the practical performance evaluation.

Chen et al. [3] introduced the use of ensemble-based
models, notably XGBoost, to optimize energy efficiency in
5G wireless systems. Their paper showed that the boosting
algorithms can predict the low-traffic periods, allowing for the
temporary deactivation of base stations to conserve energy.
However, the focus remained on energy optimization rather
than traffic load prediction, and sequential models like LSTM
were not considered.

Gao et al. [4] investigated deep learning-based methods for
dynamic resource allocation in wireless networks. Yet again,
the study centered exclusively on deep architectures and did
not incorporate a comparative analysis involving traditional
machine learning approaches.

While these studies offer valuable contributions, a signifi-
cant limitation remains: few have directly compared ensemble
models like XGBoost with sequential models like LSTM on
the same real-world wireless datasets. Most research either
concentrates on machine learning or deep learning methods
individually and under differing experimental settings, making
it difficult to draw practical, side-by-side conclusions.

This work addresses the gap by performing a compara-
tive analysis of XGBoost and LSTM models under identical
conditions using the AT&T WiFi Connection Dataset. By
evaluating of their training performance, predictive accuracy,
and adaptability to the real-world network dynamics, this
study focuse onto provide practical guidance for selecting
the suitable machine learning techniques for wireless traffic
forecasting.

III. SYSTEM MODEL

In this research, the system model is based on the AT&T
WiFi Connection Dataset, which provides empirical data col-
lected from operational wireless networks deployed across
multiple access points. Unlike synthetic or simulated envi-
ronments constructed in geometric layouts (e.g., circular or
rectangular areas), this dataset reflects real-world wireless sce-
narios typical of public or enterprise WiFi networks. Each data
record contains details such as user connection timestamps,
the number of concurrently connected users, and recorded
download speeds, offering a rich basis for wireless network
load prediction.

The modeled network topology comprises a set of WiFi
nodes to which users connect in a temporally dynamic fashion.
There is no centralized sink node, as the objective is to
study overall network traffic load rather than hierarchical data
aggregation. The traffic load is treated as a dynamic variable,
shaped by the number of users connected simultaneously and
temporal dimensionssuch as the hour of the day and the day
of the week.

This study does not incorporate energy consumption
models, as the primary focus is on forecasting network
load—specifically download throughput measured in megabits
per second (Mbps). Nevertheless, understanding traffic dynam-
ics forms a foundation for future work that may extend into
energy-aware systems where predictive traffic modeling can
support power-saving strategies such as adaptive base station
activation.

Feature extraction from the dataset yielded three key input
variables:

• Time of Engagement: The particular time at which a
connection was logged and capturing daily usage patterns.

• Day of the Week: The specific day was used to analyze
variations between the weekdays and the weekends.

• Connected Users: The number of users present at the
time of recording, reflecting real-time load conditions.

The target variable for prediction is the Download Speed
(in Mbps), framed as a continuous regression output.

This model thinks that the network traffic load is primarily
governed by recent and user-based features, positing that



historical patterns can be used to accurately forecast future
network states. Accordingly, both XGBoost and LSTM models
are employed within this structured input-output framework.

Each follows a supervised learning paradigm in which la-
beled historical data is used to train predictive models capable
of estimating upcoming traffic loads.

IV. PROPOSED METHODOLOGY

The primary objective of this study is to predict wireless
network traffic load, specifically the download speed (in
Mbps), using machine learning. We compare two models:
Extreme Gradient Boosting (XGBoost), a high-performance
structureddata gradient boosting framework, and Long Short-
Term Memory (LSTM), the recurrent neural network archi-
tecture suited for sequential data. This task is formulated as a
supervised regression problem, where historical network logs
are used to forecast future traffic conditions.

Given input features such as Hour, DayOfWeek, and Con-
nected Users, the models aim to predict the future Download
Mbps. The following steps illustrate the end-to-end method-
ology adopted in this work:

A. Workflow Description

1) Dataset Collection and Preprocessing
• Load the AT&T WiFi Connection Dataset.
• Extract temporal features from the ”Time” field:

Hour and DayOfWeek.
• Select Hour, DayOfWeek, and Connected Users as

input features.
• Use Download Mbps as the target variable.
• Apply MinMax normalization (only for LSTM

model).
2) Data Splitting

• Split dataset into 80% for training and 20% for
testing sets.

• For LSTM, prepare sequence data using past 10
timesteps.

3) Model Training
• XGBoost: Train an XGBoost regressor with 50

estimators and maximum tree depth of 3.
• LSTM: Train an LSTM model with 50 hidden units,

over 10 epochs, using a batch size of 32. The input
shape is (sequence length = 10, features = 3).

4) Model Evaluation
• Predict download speed on the test set.
• Evaluate performance using Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), and R2
Score.

• Visualize actual vs. predicted values.
5) Performance Comparison

• Compare the models based on accuracy, robustness
to fluctuations, and computational efficiency.

B. Pseudocode of Proposed Algorithm

BEGIN

Load AT&T WiFi Connection Dataset

Preprocess Data:

Extract Hour, DayOfWeek, Connected

Users

Normalize Data (for LSTM)

Split Data into Train and Test sets (80/20)

Train XGBoost Model:

Initialize XGBoost with parameters

Fit model on training data

Prepare Sequences for LSTM:

Create sliding windows of 10 timesteps

Train LSTM Model:

Initialize LSTM layers

Fit model on training sequences

Evaluate Models:

Predict on Test Data

Calculate MSE, RMSE, R² Score

Visualize:

Plot Actual vs Predicted traffic curves

Plot Feature Importance (XGBoost)

Plot Training/Validation Loss (LSTM)

Compare XGBoost and LSTM performance

END

V. EXPERIMENTAL ANALYSIS

To estimated the performance of the proposed machine
learning methodology for a wireless network load prediction,
a series of were tested using the AT&T WiFi Connection
Dataset. This section outlines the experimental setup, presents
the evaluation results, and provides an analysis of model
performance based on the generated data.



A. Experimental Setup
The original dataset was preprocessed by extracting three

primary features: Hour of the day, Day of the week, and
Number of Connected Users. The target variable for prediction
was the observed download speed (Download Mbps). For the
LSTM model, feature normalization was applied using Min-
MaxScaler to the scale-values between 0 and 1. In contrast,
XGBoost was trained directly on structured, non-normalized
data.

Dataset was divided into the 80% for training and the
remaining 20% for testing sets. The model configurations were
as follows:

• XGBoost: 50 estimators, maximum tree depth of 3.
• LSTM: 50 hidden units, sequence length of 10 timesteps,

trained over 10 epochs with a batch size of 32.
Both models were evaluated using the following perfor-

mance metrics:
• Mean Squared Error (MSE) – Average of squared dif-

ferences between predicted and actual download speeds.
• Root Mean Squared Error (RMSE) – Square root of

MSE; interpretable in Mbps.
• R2 Score – Proportion of variance in the target variable

explained by the model; closer to 1 indicates better
performance.

B. Results Overview
Table I summarizes the evaluation metrics obtained for both

models.

TABLE I
PERFORMANCE COMPARISON OF XGBOOST AND LSTM

SI.No Model MSE RMSE R2 Score
0 XGBoost 398.37 19.96 0.53607
1 LSTM 1125.52 33.55 -0.34086

The results show that the XGBoost model significantly
outperformed the LSTM model across all evaluation metrics.
XGBoost achieved lower MSE and RMSE values, indicating
higher prediction accuracy and consistency. Moreover, the
positive R2 score (0.53607) demonstrates that XGBoost was
able to capture over 53% of the variance in download speed,
whereas the LSTM model had a negative R2, reflecting poor
generalization. The results show that the XGBoost model was
notably overcomes the LSTM model across all evaluation
metrics. XGBoost achieved the lower MSE and RMSE values,
indicating the higher prediction of accuracy and uniformly.
Moreover, the positive R2 score (0.53607) demonstrates that
XGBoost was able to capture over 53% of the variance in
download speed, whereas the LSTM model had a negative
R2, reflecting poor generalization.

These findings suggest that XGBoost, being more stable and
efficient for structured tabular data, is better suited for wireless
traffic prediction in scenarios where real-time responsiveness
and robustness are key. Meanwhile, LSTM may require further
tuning, more data, or enriched temporal features to improve
its learning performance in such contexts.

C. XGBoost: Actual vs Predicted Traffic

This figure presents the comparison between actual down-
load speeds and the values predicted by the XGBoost model
across a range of sample instances. As observable from the
plot, the orange line will representing XGBoost predictions
tracks the blue line (actual data) with reasonable accuracy,
indicating the model’s effectiveness in the form of capturing
underlying patterns in the wireless network traffic.

The results were produced by the XGBoost exhibit a
smoother response to changes in download speed compared
to the actual data, which shows higher variability and sudden
spikes. This behavior reflects a well-known characteristic of
gradient boosting algorithms: they tend to integrate output and
avoid overfitting by the smoothing over outliers or disrupt
fluctuations. In this context, XGBoost will provides more
stable forecasts that are particularly useful for the real-time
systems, where the short-term fluctuations are often treated as
the noise or anomalies.

From the graph, it can also be observed that:
• The XGBoost consistently follows the trend of the

actual data, capturing peaks and valleys with moderate
deviation.

• While some high-variance spikes in actual download
speeds are under-predicted (e.g., at sample points ∼6,
∼16, and ∼30), the general directionality and slope of
changes are retained.

• The model performs well on regular traffic segments
where the signal is more stable, indicating its strength
in identifying dominant features (like Hour and Day-
OfWeek) and general traffic behavior patterns.

This level of performance supports the earlier evaluation
metrics (MSE, RMSE, and R2), where XGBoost outperformed
the LSTM model. Its computational efficiency, predictive
stability, and interpretability through feature importance make
it a strong candidate for practical deployments in wireless net-
work management systems, particularly those needing quick
decisions and low-latency forecasting.

Fig. 1. Actual vs Predicted Download Speed using XGBoost.

D. LSTM: Actual vs Predicted Traffic

The figure compares the actual download speeds against the
predicted values generated by the Long Short-Term Memory



(LSTM) model across a series of test samples. The plot
highlights the LSTM model’s performance in capturing the
underlying temporal dynamics of wireless network traffic.

Unlike XGBoost, which will provides the smoother and
more stable predictions, LSTM is specifically designed to han-
dle the sequential data and the time-dependent patterns. This
is noticeable from the model’s ability to follow certain trends
and directional shifts in the actual data, particularly in the early
and middle segments of the sample range. However, the LSTM
predictions indicated to underestimated the sharp increases in
the download speed, producing a relatively expected output
curve compared to the actual incendiary traffic behavior.

Key observations from the graph include:
• Recent Trend Recognition: The LSTM model

successfully take into the general track of the traffic,
especially in the initial time steps. It aligns reasonably
well with the actual data in gradual rise and fall segments.

• Smoothing Effect: LSTM predictions are less erratic
and do not fully mirror the high-frequency fluctuations
seen in the actual measurements. This could be due to the
limited number of training epochs or the complexity of
the sequence learning task, which can sometimes cause
underfitting in models trained on relatively small datasets.

• Response to Sudden Spikes: Although the model
does not precisely track high spikes (e.g., around
sample indices ∼15, ∼20, and ∼30), it does reflect an
awareness of upward or downward trends near these
events, suggesting partial recognition of volatile behavior.

• Prediction Lag: There is also a slight lag in the predicted
response in some segments, which is typical for LSTM
models when the sequence context window is not large
enough to anticipate abrupt changes.

Despite these limitations, the LSTM model’s strength lies
in its the adaptability to the non-linear time dependencies,
making it valuable in the scenarios of where the traffic patterns
exhibit recent correlations and seasonality. Its performance
may improve the further with additional new features (e.g.,
rolling averages, past window trends) or deeper architectures.

Overall, the LSTM model demonstrates an important com-
plementary strength to XGBoost: while it may not offer the
same level of short-term accuracy, it excels in modeling
time-evolving patterns, which is essential for networks with
unpredictable and bursty load conditions.

E. Feature Importance — XGBoost

This figure presents a horizontal bar chart visualizing the
feature importance scores produced by the XGBoost model
after training on the wireless traffic dataset. Feature impor-
tance, in this context, reflects how frequently and effectively a
feature was used to split the data in decision trees within the
gradient boosting ensemble. A higher score indicates that the
feature played a more significant role in improving prediction
accuracy during training.

Fig. 2. Actual vs Predicted Download Speed using LSTM.

From the chart, we can observe the following ranked feature
importance:

• Hour (F score: 183.0): The most important feature
in the model, Hour, strongly influences the prediction
of download speed. This suggests that traffic load in
the wireless network follows clear time-of-day patterns,
likely due to consistent user behaviors—such as increased
usage during work hours, reduced activity during the
night, or spikes in the early evening. The model heavily
relies on this temporal context to predict traffic load,
which makes sense in real-world network management,
where diurnal usage cycles are common.

• DayOfWeek (F score: 120.0): The second most impor-
tant feature, DayOfWeek, reflects the influence of weekly
patterns. For an instance, from monday to friday may
show higher usage due to the workplace or campus ac-
tivity, whereas weekends we could see the less structured
but more rushed traffic patterns. This feature allows the
model to catch periodic fluctuations across the week,
assisting in the generalization of trends over the time.

• Connected Users (F score: 36.0): Interestingly, the
number of connected users has the lowest importance
score. While intuitively one might expect this to be a
strong predictor of network load, its relatively low Fscore
may suggest a few possibilities:

– The number of connected users may not correlate
directly with download throughput (e.g., some users
might be idle).

– Temporal features like Hour and DayOfWeek might
already explain much of the variance in user behavior
and usage intensity.

– There might be a non-linear or interaction-based
dependency that XGBoost’s tree structures are not
capturing fully.

Insights:
• Time-based features dominate prediction performance in

this study, emphasizing that wireless traffic patterns are
strongly cyclical and time-dependent.

• The visualization also reinforces why XGBoost per-
formed well in the experiments: it was able to rapidly
identify and leverage high-signal features like Hour and
DayOfWeek.

• In future work, expanding the feature space to include



interaction terms, application usage types, or device-level
metrics could enhance predictive power further.

Fig. 3. Feature importance in XGBoost model.

F. F. Training and Validation Loss — LSTM

This figure shows the learning behavior of the Long Short-
Term Memory (LSTM) model during the training, by plotting
the training and validation loss values over the multiple
epochs. These loss curves are essential diagnostic tool in
deep learning that help to estimate how well the model is
learning the patterns in the data and whether it is generalizing
effectively to unseen data.

The training loss curve represents the error on the training
dataset after each epoch, while the validation loss curve
indicates the model’s performance on the hold-out validation
set.

Key observations from the plot:
• Monotonic Decrease in Loss: Both training and vali-

dation losses show a consistent downward trend, recom-
mending that the model is effectively learning from the
data. A decreasing loss is a good indication that the model
is minimizing error through weight optimization.

• No Major Overfitting: The gap between training and
validation loss remains small throughout the training
process. This implies that the LSTM model is not over-
fitting—i.e., it is not memorizing the training data but
learning generalizable patterns. In deep learning, a large
gap is often a red flag for overfitting.

• Smooth Convergence: The curves do not show signifi-
cant oscillations or spikes, indicating that the learning rate
is well-tuned and that the optimization process is stable.
Oscillating curves may suggest noisy data, suboptimal
batch sizes, or poor initialization.

• Room for Improvement: Although the losses decrease
steadily, they begin to plateau toward the final epochs.
This suggests that the model may be reaching its capacity.
Performance might be improved through:

– Increasing the number of epochs
– Adding more hidden units or LSTM layers
– Using longer input sequences
– Applying regularization (e.g., dropout)
– Fine-tuning learning rate schedules

Fig. 4. LSTM Training vs Validation Loss.

G. G. Results

The experimental foundings demonstrated that the XGBoost
outperformed LSTM in terms of minimizing the prediction er-
ror and the capturing variance in network load. The XGBoost’s
structured learning approach efficiently identified prevalent
features and delivered the fast, accurate predictions, making
it more suitable for the real-life applications where figuring
speed is essential.

In the contrast, LSTM showed the strong performance in
modeling recent dependencies within the data. Its ability to
respond to the disrupted changes in network load conditions
highlights its strength in scenarios with high variability. How-
ever, it required greater computational resources and longer
training times.

These results suggest that XGBoost and LSTM have com-
plementary strengths. XGBoost excels in the processing struc-
tured features fastly, while LSTM offers the deeper insight into
the sequential trends. Future work may focus on the hybrid
approaches that combine both models to make use of the
advantages of the structured feature learning and sequential
modeling simultaneously, potentially leading to enhanced pre-
dictive performance in dynamic wireless environments.

VI. SUMMARY AND FUTURE WORKS

In this research, we addressed the problem of wireless
network load prediction by applying and comparing two
advanced machine learning models: XGBoost and Long Short-
Term Memory (LSTM) networks. Using the AT&T WiFi
Connection Dataset, we extracted key features such as Hour of
the day, Day of the week, and the Number of Connected Users
to predict future download speeds. Through the structured
experimentation and evaluation, as I illustrated the potential
of the machine learning approaches to accurately forecast
the network traffic load, which is important for efficient
resource management and overcrowding mitigation in wireless
communication systems.

The primary contributions of this work can be explained as
follows:

• A complete comparative framework was implemented
using both a structured-data ensemble method (XGBoost)
and a time-series deep learning method (LSTM) for the
same load prediction task.



• Analysis metrics such as the Mean Squared Error (MSE),
the Root Mean Squared Error (RMSE), and the R2 Score,
along with visual analyses including prediction curves,
feature importance diagrams, and loss plots, were used
to interpret model performance.

• XGBoost achieved faster training times and higher pre-
dictive stability, while LSTM demonstrated stronger
adaptability to sudden and irregular traffic variations.

• The complementary strengths of both models suggest the
potential of hybrid approaches that combine structured
feature learning and temporal sequence modeling for
more robust predictions.

This study underscores the increasing importance of
intelligent, data-driven techniques for managing modern
wireless networks. As wireless infrastructure evolves to-
ward complex, heterogeneous, and user-dense environ-
ments—particularly with the emergence of 5G, 6G, and IoT
technologies—machine learning models will play a critical
role in automating network optimization and enhancing service
quality.

Despite promising results, certain limitations exist. This
work focused on a minimal set of temporal and user-based
features, without incorporating factors such as user mobility
patterns, device types, environmental noise (e.g., interference),
and application-level usage, which may significantly influence
network load. Additionally, all evaluations were conducted
on static offline datasets and not validated under real-time
conditions.

Future work will extend this research in multiple direc-
tions:

• Development of hybrid models that integrate XGBoost
and LSTM to combine structured and sequential learning.

• Expansion of the feature set to include contextual data
such as user location, device characteristics, and environ-
mental variables.

• Deployment of trained models into real-life monitoring
systems to support live traffic prediction and the adaptive
resource control.

Overall, this work lays a strong basis for future efforts
in intelligent wireless network management, offering insights
into model effectiveness, trade-offs, and the evolving role of
machine learning in next-generation communication systems.
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